:
:

/

l
All""

= 7 FIXER

Unlocks the secrets of the disk and lets
you access hidden or “lost” information.

| F=ISK

-

Includes
HIDDEN POWERS

by Bill Gronos

2
:

J

l LN
. T
| RN "—_
Navarone Industries, Inc. ! IE—— —
51} Lawrence Kxpressway, 800 ! e
SUHII}"UHIE, CA 94086 y e,

OPERATING INSTRUCTIONS

The DISK FIXER is one of the most powerful utilities available for the Tl-
99/4A home computer. With DISK FIXER, you can access Floppy disks
by sector rather than by FILE NAME. You can now display or print the
actual “binary” contents of any sector of a floppy with a single
command.

Other features of the DISK FIXER allow you to change any byte on any
sector, or move data from one sector to another.

This program is ideal for fixing "blown directories,” improperly closed
files, and recovering data from diskettes otherwise inaccessable.

WARNING

THIS PROGRAM HAS THE CAPABILITY OF DESTROYING DATA ON
YOUR DISKETTE IF IMPROPERLY USED.

Page 2

OPERATING INSTRUCTIONS

1. Insert cartridge into “Game Port” on the console then select “DISK
FIXER” from main menu screen.

2. The Disk Fixer will load and begin execution and display the
banner:

DISKFIXER VER2.0
(C) Copyright 1983 By
NAVARONE INDUSTRIES

SELECT OPTION
R - READ
P - PRINT
W - WRITE
F - FIND STRING
A - ALTER DATA
D - DISPLAY BUFFER
C - CURRENT SECTOR
M - INSPECT RAM
H - HELP
Q - QUIT

3. Selectthe option by entering the appropriate command, and press
“enter.” It you enter the command incorrectly, the message, INVALID
COMMAND will be displayed and you may then re-enter the command.

READ SECTOR

To “read” a sector of data, enter the following command
R sss,d |

where: sss = The actual sector address you wish to read. If you do not
enter this parameter, the program will use the last sector address

entered pius one. This can be used to read sequentially through the
diskette.

d = The disk drive device code. If you omit this parameter,
the program will use the previously entered device code.

Page 3

WRITE SECTOR

To “WRITE” a sector of data, enter the following command. This com-
mand should be used with caution as it will write the buffer contents
Into the sector defined. if no sector address is entered, the data will be
written into the “CURRENT" sector location.

CAUTION: Do not use the “W" option immediately following
a “P" rint function without specifying the entire syntax. The current
sector pointer is always incremented after a print function and the use
of a "W” without a sector address will cause the current buffer to be
written on the next sector. So don't do it!

W sss.d

Where: sss = The actual sector address you wish to read. i you do not
enter this parameter, the program will use the last sector address
entered.

d = The disk drive device code. If you omit this parameter,
the program will use the previously entered device code.

ALTER DATA

This command is used to alter or “change’ the data in the buffer. The
Disk fixer reads data from the diskette into an internal memory buffer.
This buffer can be written back out to the same sector it was read from
by just entering a W command. Use the ALTER command to change
the contents of the buffer before writing it back.

A 0000

Where: 0000 = The address of the data to alter. This is a relative
address, and as displayed by the D command.

After changing the contents of the buffer, you can use the D command
to display the buffer on the screen. The PRINT command cannot be
used because it performs a read from the diskette which will overlay
any change you have just made.

Page 4

DISPLAY BUFFER

This command will display the current memory buffer on the screen.
No reading or writing will occur with the use of the command.

D
INSPECT/CHANGE

This command is identical to the M command in the TI-DEBUGGER.
This option allows you to inspect or change any RAM location in the
system.

M o000

where: 0000 = The address of the data to inspect. This must be an
ABSOLUTE address. You can display the contents of VDP memory by
using a “V” after the address.

PRINT SECTOR

To “PRINT” a sector of data, enter the following command. You may
optionally print a consecutive series of sectors with this command.

P sss,d,n

where: sss = The actual sector address you wish to read. If you do not
enter this parameter, the program will use the last sector address
entered pius one. This can be used to read sequentially through the
diskette.

d = The disk drive device code. If you omit this parameter,
the program will use the previously entered device code.

n'= The number of consecutive sectors to print.

A message will request you to enter the LIST DEVICE:
Enter the device to list the data. The default is
RS232.BA = 9600

HELP

Use this command to display the options on the screen.
H

QUIT

This command causes DISK FIXER to return to the editor assembler.

Page 5

FIND CHARACTER STRING

Use this command to locate the sector address of a character string.

Enter the command as follows:
F SSS, EREE, d

Where SSS is the Starting Sector for the Search,
Where EEE is ending sector of the Search,
and d is the disk drive number.

The Prompt:
ENTER CHARACTER STRING

Enter up to 30 characters. The Disk Fixer will search between the sec-
tor limits specified onthe Disk {d) and display the Sector address of the
First occurance of the character string entered.

If the Disk Fixer cannot find the character string it will display the
message.

STRING NOT FOUND - SECTOR ONNN (Sector number indicates
Last Sector Searched).

The Disk Fixer will allow you to change any byte on any sector, move

data from one sector to another, and, one of the most powerful options,

will search for a character string and DISPLAY the sector address of
where it found the data.

Page 6

THE HIDDEN POWERS OF DISK FIXER
by Bill Gronos

*INDEX *

FORWARD

. ¥ USING DISK FIXER TO ENHANCE BASIC PROGRAMS

_ 1-1 CREATING ILLEGAL LINE NUMBERS

+-1-2 HOW BASIC PROGRAMS ARE STORED IN CONSOLE ME-
MORY

—1-3 HOW BASIC PROGRAMS ARE STORED ON DISK

—1-4 MAKING BASIC PROGRAMS INVISIBLE

. 1-5 CREATING PROGRAM ODDITIES

_15-1 APROGRAM THAT “DOESN'T DO WHAT IT IS SUPPOSE
TO DO

~1-5-2 A PROGRAM WITH LINE NUMBERS THAT RUN
~ BACKWARDS

—2_UNPROTECTING PROGRAMS AND DISKS

~2-1 REMOVING THE COMPANY DISK PROTECTION
~2-2 COPYING DISKS WITH “HOME BREW"” PROTECTION
—2-2-1 PROTECTION BASED ON STANDARD TRACT AND SEC-
TOR FORMAT
—2-2-2 NON-STANDARD PROTECTION METHODS
~2-3 UNPROTECTING EXTENDED BASIC PROGRAMS

3. USING DISK FIXER TO REPAIR BAD DISKS
~3-1 HOW TO FIX A BLOWN BIT MAP
~3-2 FIXING BLOWN DIRECTORY LINK MAPS
~3-3 WHAT TO DO IF YOU ACCIDENTALLY DELETE A FILE
3-4 PARTIAL RECOVERY OF DAMAGED FILES
.3-4-1 BASIC PROGRAM RECOVERY
3-4-2 TEXT FILE RECOVERY
3-5 HOW TO FIX A BLOWN FILE DIRECTORY
3-5-1 CONSTRUCTING TEXT FILE DIRECTORIES
3-5-2 CONSTRUCTING BASIC PROGRAM FILE DIRECTORIES

APPENDICES

A1 HEX TO DECIMAL CONVERSION

A2 HOW TO READ THE BIT MAP ON SECTOR O
A3 CONTROL SECTOR FORMATS

Page 7

FORWARD

I'm sure few of you Disk Fixer owners really know the power you
possess when you plug that module intoc your console.

And thatis precisely the purpose of thisbooklet, to share the secrets of
that power with you. To spare you many hours of fabor spentunlocking
those secrets so that you may spend the time putting the power to
work.

| have written this booklet for the novice user who knows little or noth-
ing about the inner workings of either the disk controller or the 96/4
console. will give you step by step procedures that wili allow you to do
some pretty amazing things. The Disk Fixer is a magician's wand. | will
show you how thiswand can do many tricks. Some of these tricks have
important programming applications, such as making some lines of a
BASIC program invisible or preventing a program from being altered.
Other tricks are designed to amuse you and to mystify your friends.

Also, | will share some techniques to aid you in performing the delicate
surgical procedure that gives this unique module its name—a mini
medical school for the treatment of sick disks.

Throughoutthis booklet | have made references to hexadecimal num-
ber notation (base 16). This was absolutely necessary because we will
be dealing with the internal structure of disks and programs and hex-
adecimal is the language spoken in these realms. Your Disk Fixer pro-
gram speaks the same language, but your Disk Manager conversesin
standard decimal (base 10} numbers. This is a little confusing and a
giant pain in the posterior. For example, when you use the Disk
Managerto do adisk test, the bad sectors will be given in decimal nota-
tion. You have to convert these values to hexadecimal when you use
them with Disk Fixer. Hexadecimal numbers will be preceded by a
“greater than” symbol. Decimal 10 is > A, etc.

~ All the examples of Basic programs in this booklet are written for T!
Basic¢ (the language supplied with the console) and most of them will
work with Extended Basic. However, be aware that some format
changes do exist and may cause results to vary.

| have tried not to bore you by being overly technical, though atreatise
ot this nature by necessity requires a certain amount of detail. Let’s
begin slowly so that you may gain confidence in using this module; let's
start by having a little fun with Basic programs.

Page 8

1. USING DISK FIXER TO ENHANCE BASIC PROGRAMS

Ong of the most valuable uses for Disk Fixer is to radically change
Basic programs as they are stored on disks. The moditied programs
have properties that are both interesting, useful and impossible to
duplicate through normal use of the Basic Language Editor.

When the modified programs are loaded Into the console via the OLD
command, the changes are not detected by the Basic Editor. Incorrect
Basic lines will produce errors when the programs are run, but many
changes will execute correctly and produce beneficial results. Once
these special programs are in console memory, they can beresavedto
disk or tape. Thus users without disk drives can be mystified and

benefited by your newly acquired powers. We'll start with a simple
example to illustrate this technique.

1-1 CREATING ‘ILLEGAL’ LINE NUMBERS

Did you ever try entering a Basic Statement with line number 0 or

600007 Ifyou did, you gotan error. This errorcheckingroutineis active
ﬂply when you are creating or editing a program in the normat way.
Line numbers are not checked when programs are Run or Saved.
Therefore, illegal line numbers created with Disk Fixer will be accep-

ted by the Language Interpreter. Let's make a simple change to illus-
trate this point:

1. Power-up your computer in Tl Basic and type in this line:
1 PRINT “0 IS AN ILLEGAL LINE NUMBER”

2. Using a blank, initialized disk, save the program with the command:
SAVE DSK1.DEMO1

3. Exit Basic by typing BYE, and insert your Disk Fixer mod
, ute. Sel
DISK FIXER from the main menu. °

f"* With the disk containing DEMO1 in drive 1, read the sector contain-
Ing the test program by entering the command:
R 22,1 [ENTER])

9. Next, press enter to return to the menu and bring up theline number
to be altered with the command :

A 8 [ENTER]

6.Change the line number to zero by typing in:

0 [ENTER]

Page 9

Ben

-‘_____

{3
£o

7. Save the altered sector back to disk with the Write command:
W [ENTER] |
8.We're done, so exit Disk Fixer by typing :
Q [ENTER]

FIGURES 1 AND 2

r

SECTOR ADDRISS (Egiji:)
INTERPRETED

NAVARONE IND. == DISK FIXFR V2.0 % SECTOR DUMP

ADDR = 01 23 45 67 89 AB CD EF

0000 = 0003 37B7 37B4 37D7 0Q0U1 37BY 1FOC CTIH #277747W0E79%0(s
0010 = 3020 4953 2041 4E20 4940 4C45 4741 4C20 O 1S AN TLLEGAL
0020 = 4C49 4E4S 204F 554D 4245 5200 AAJF FPLL LINE NUMBpRREz?EE
0030 = 0300 0000 0200 03C4 454D 4F31 2020 2020 #xsisisEMO]
0040 = 2000 OONO G000 0100 0000 D000 UOOO QOO0 S sssinrpnins
0050 = 0000 0022 Q000 0000 CCN0 00D 0000 DOOQO s

0060 = 0000 COOO 0000 D000 0000 000D 0000 GO0 wE: EEEIRE
G070 = 0000 0000 0CO0 COOD 0000 0000 000G QOO sEERiRe s

0080 = 0000 Q000 0000 OC00 0000 0000 0000 Q0NN FRskiimt ;
0US0O = 0000 0000 Q0G0 0000 0VLC 0000 0000 QOEE s RRERERS
GOAO = 0000 0000 00CC 0000 0000 0000 Q000 DO st stk i
O0BO = 0000 0000 0000 0000 0000 0000 DOOQ QOO s Run i
00CO = 0000 0000 000G Q000 0000 0000 QOUN DO R
00D0 = Q00O 0000 0000 0000 0000 000N GOU0 DORO FwwE Rty g
OOEQ = 0000 0000 0000 0000 G0UD 0000 Q00D DOUQ i wEiss

QOF0 = 0000 0000 0000 0000 0000 000G QLON CUOO s E it

(22

NAVARONE 1ND. #%% DISK FIXER v2.0 %% SECTOX DUMP SECTOR ADDRESS
ABDR = 01 23 45 67 89 AB CD EVF INTERPRRETED
0000 = QUOJZ_37B7 37B4 3707 00OD 3719 LE9C CTIR 377 747w 70w
0010 = 3020 4953 2041 4E20 494C 4C45 4741 4C20 0 15 AN TLLEGAL
0020 = 4C4Q 4E45 204F 554D 4245 5200 AA3F FEIY LINK NUMBLER::#2=
0030 = 0300 0000 0200 03C4 454D 4F31 2020 2020 ssssiDIMO]
0040 = 2000 Q000 0000 O100 0000 000G Q000G QOO0 3 S R
0050 = 0000 0022 0000 0000 0000 U000 DOOD 00O st v
0060 = G000 0000 000 0000 000G 0000 OOUN QROD FRE TR
0070 = 0000 0000 G000 0000 (000 OGN COOD 0000 FFswiskEs e
00RO = 0000 0000 000G 0000 0000 0000 V00 000D = AT "
0090 = 0000 0000 0000 0000 0000 0000 QOO0 OOOG St £
OOAD = 0000 0000 OO00 0NDO 00CO 000D 0000 QOO ** AR
COBO = 0000 0000 0000 Q00D 0000 0000 G000 Q000 Fimishridiistds
0GCO = 0000 D000 D000 0000 0000 G000 0000 QOO0 il TTREIes
Q0D0 = 0000 0000 GO0O 0000 0000 0UOO GOOC Q0QD kTR TS
O0F0 = Q000 0000 Q000 0000 Q000 0000 0000 G000 ity
OOF0 = 0000 D000 00U 0000 000G 0000 0000 OO0 ety

Page 10

I'm sorry if this detailed, step-by-step process offends any of you who
are old hands atusing Disk Fixer, buttwanted to be surethatuserswho
have justinserted their modules into the console for the very first time

haven't been left by the wayside. It would have been far simpler to
say:

READ SECTOR >22, ALTER THE VALUE AT WORD >0008 to >0000,
WRITE THE SECTOR BACK TO DISK AND EXIT.

It would have been even more concise to simply say:
CHANGE WORD >0008 OF SECTOR >22 to >0000

| won't go into as much detail on disk changes as | did here. When | say
to alter a byte or a word at a certain disk location, you will need to read
the sector, aiter the appropriate vailues and save the changed sector

back to the disk. If you are ever confused, refer back to the detailed
instructions in this section.

Do you all know why | said to use an empty disk in step two? The first
program saved to a “clean” disk will always begin at sector >22. Since
we know what sector the program would be saved to, we don't have to

hunt through the File Directories looking for the file name DEMO1.
Now let's take a look at the results of our alteration.

Heturn to Basic and load the altered program with the command QLD
DSK1.DEMO1. andlistit. Instead of 1 PRINT “TEST” you have 0 PRINT
“TEST”. Try erasing or editing the line and Basic will refuseto doit. Giv-

ing you a BAD LINE NUMBER error message. However, the program
will still run correctly!

Does this meanwe havefound a way to keep others from deleting lines
from our programs? No. That line 0 can be deleted if we first RESe-
quence the program. Type in RES and hit enter, list the program and
you -will see that line 0 is now 100 and can be edited or deleted.
Therefore,changing line numbers into illega! values isn't enough to
protect them from tampering. We must find a way to keep programs
from being resequenced--Disk Fixer can do it! But before we see how

this can be done, let me explain the memory format of a Basic
program.

Page 11

1-2 HOW BASIC PROGRAMS ARE STORED IN CONSOLE MEMORY

Figure 3 shows the contents of the sector that holds the Basic
program, 1 PRINT “TEST".

NAVARONE IXD.

ADDR = 01 23 45 67 8Y C D FF INTERPRETED

OUOD = 0005 37CE 37CE 3707 0001 3700 Q8YC CT0H | 5w NTK 7wes 7pare(s
0010 = SEL5 3355 TNAA SFFF 11073 0000 00073 0003 TES S % et immes
D020 = C445 4DAE 3220 2020 2020 0000 GUOC 0001 DEMO?2 SHE S
0030 = 0000 COUO OUOL 0D Q00D QOO0 273000 DOO0 & S e e g
0040 = 00O 00GD 00U BOBD QUOD V00D 0000 DONQ # R Rt
0050 = (00O 00OD UOLL HOOD VOO OGHN COHO VONE : ﬂ
(060 = VOO0 00UO VNN DOOY VOLO VOOL BLOO VOO0 g 5
U070 = 0000 Q000 Q00N DLOG DVOU VOO0 0CO0 VOO S %
D080 = 0000 0000 0000 NOOG VOO0 0000 0000 QOOD i :
GUY0 = 0000 Q00D NEOO 0NOD 0000 LUOG VOO0 OGON s

00A0 = 0000 TOGH 0000 0000 0000 00O 00VD QUOU s -
OOBO = D000 G000 VOOD DOCO VOO0 O0UO OOVO COOD s ¥
O0CO = 000D UCOO D000 DOCD 006N 0000 0000 000() % e b
CODO = DVLO COOL OOUG BODD VOO0 DODG ODOD VOO S 2
OUEO = 0000 0000 0000 DO0O 0000 BOGE QUOD DUOG R :
OOFQ = COOO 0000 D0OC VOOG D0VD GUBG VROO VOOO 3

FIGURE 3

w33 DTSK FIXER V2,

0
AD

oFCTOR DUMP

SECTOR ADDRESS

By analyzing several short programs, | was able to figure out what all
thatgarbage means. This processiscalled “hacking” and, since Texas
Instruments treated all knowledge of the inner workings of the 99/4 as
top secret nuclear bomb plans and apparently viewed us hobbiests as
Soviet spies, it is the only way one can learn the full capabilities of
their computer.

To begin to understand how a program is stored on disk, we must
know how itis stored in the computer. Programs are stored in two sec-
tions:the Line Number Tableand the Program Statement Tabie. When
a program is listed, the line numbers precede each instructions, but
this is simply for your convenience, not the computer’s.

Page 12

LINE NUMBER TABLE:

The line number table contains four bytes of information for each pro-
gram instructions. The first two bytes are the line number you used for
that instruction (in hexadecimal notation, of course) and the last two
bytes are the memory address where the computer actually puts the

instruction. The line numbers are stored in reverse order from the
highest to the lowest.

Whenaprogramisrun, theline numbersaren’tused unless the normal
sequential flow is altered by a GOTOQO, GOSUB, etc. When a transfer
instruction is encountered, the computer finds the new line number in

the table and begins executing instructions at the indicated memory
point.

PROGRAM INSTRUCTION STATEMENTS:

The instruction statements come after the line number table and are
stored in “tokenized” format. What does this mean?--you won't find
the word “PRINT” anywhere in Figure 3. if Tt Basic weren't tokenized,
"PRINT"” wouid require five bytes of memory. Allthe commands would

require a byte for every character; “RANDOMIZE” would take nine
bytes if commands weren't “crunched”.

Instead of suffering under such a colossal waste of memory, every

command is symbolized by a one byte value. This results in a subsan-
tial reduction in memory “overhead”.

The token for the command “PRINT" is hexadecimal >9C, which can
be found at byte >D of Fig. 3. The decimal value would be 156. Let me
give you an interesting demonstration of this:

1.POWER-UP YOUR COMPUTER IN TI BASIC AND TYPE IN THE
LINE:

1 REM [CONTROL] [;] [ENTER]

2. LIST THE PROGRAM AND, MYSTERIOQUSLY, THE WORD “PRINT"
HAS APPEARED.

Actually, since we know how programs are tokenized, it isn’t all that
mysterious. If you check the appendix in the Tl Basic “User’s Reference
Guide”, page lli-2, you'll find that [CONTROL] {;} has a character value
of 156. Seeing command tokens within REMs being printed out as
command names is just a quirk of Tl Basic.

Page 13

G

Now that you understand how programs are kept in the console

memory, you'll see that they are stored on disk in almost an identi-
cal way.

1-3 HOW BASIC PROGRAMS ARE STORED ON DISK

On disk, programs are still stored in two sections: the line number
table and the instruction statements. However, the first eight bytes of
the first program sector are pointer values that are used by the Basic
program loader. These pointers are used to load the program inio the
proper area of console memory and also to indicate where the Line
Number Table ends and the program instructions begin. We will con-
sider these pointer bytes as a third section of the stored program.
Thus, programs are stored on disk in three segments:

PROGRAM LOAD INFORMATION.
LINE NUMBER TABLE.
INSTRUCTION STATEMENTS.

The Program Load Information always takes up the first eight bytes,
but the lengths of the other two sections will vary depending on the
number of lines and the lengths of the program statements.

Let’'s examine the disk storage format of our one line program. Look at
Fig. 3 again while I give you a byte-by-byte explanation of what that
“‘garbage” means.

PROGRAM LOAD INFORMATION.
Ve Eytgs 0-1(005): This value is used by the Basic Program Loader (when

Is a valid program. It's value is obtained from the next four bytes.

(you use the ‘OLD" command) to check that what you are trying to load

/

|
f
OR

Knowing how to find this value is of minor importance unless you want
to build Basic programs from scratch. For the sake of completeness,
I'll show you how to find this value.

- You “exclusive or” words >2and >4. To do this, expand the values into
their binary equivalents and line up the columns. lf the columns are dif-
ferent(0/10r 1/0), write a one below that column. Change theresulting
binary value back into hex. This is the value that is placed in
bytes >0-1

Page 14

EXAMPLE OF “EXCLUSIVE OR”
>2=37CE= 00110111 1100 1110
>4=37CB= 00110111 1100 1011

0000 0000 0000 0101
0 0 0 5
THE VALUE >0005 IS THE RESULT

Bytes 2-3 (37CE): The console address of the end of theline num-
ber table:

Bytes 4-5 (37CB): The starting address of thé line number table.

Bytes 6-7(37D7): The address of the highest memory location used by
the program. - -

These program location pointers are the values that were being used
by the Basic Interpreter whenthe program was stored. Ichanged these
onthediskinan attempttogetthe programtoloadina different area of
memory, butitdidn'twork. It seemsthat the Basic loader is going to put
the program in the first available area of memory. It only uses the
stored addressesto gettherelativelocationsofthe Line Number Table
and the Program Statements Table. Example: If you save a one line
program and then use Disk Fixer to subtract >3700 from all the
address values, the program still loads in the same area as the original
values. Oh weil, being able to change the memory area where the pro-
gram would load is of very limited use anyway.

LINE NUMBER TABLE

'Bytes 8-9(0001): Thelastline number of the program (and, in this case,

the only line number).

Bytes >A-B(37D0): the beginning address of the program line.
PROGRAM STATEMENT TABLE B
Byte >C{08): length of instruction.

Byte >D(9C): command token (PRINT).

Bytes >E-14: data for the print statement.

If this were a much longer program, say about 8000 bytes, the Line
Number Table would require several disk sectors. A 100 line program
requires 400 bytes of disk space to store the Line Number Table, which
is about a sector and a hatf.

Page 15

/47,
141 ¢

/¥

/72

- ——

<Y

77
s

5

“Wait a minute”, you say, “Haven’t you forgot something? What's all
that stuff after the instruction statement?” This remaining information
is the data contained in the buffer Space used by the disk drive. It won't
affect the storage or loading of Basic programs. It just happens to get
saved if the program doesn’t exactly fill up the last sector completely.

1-4 MAKING BASIC PROGRAMS INVISIBLE
Now that you've learned the mechanics of manipulating Basic pro-
gram statements, let me show you how to put this knowledge to good
use. |
Have you ever wanted to keep people from listing or altering your
Basic programs? Perhaps you have an educational program and you
wanted to protect it against those who are cu nning enough to list it out
and extract the answers. If you have, then Disk Fixer can do the job!
We've already learned how to change line numbers into ilegal values
that can’t be edited or deleted, but we found that resequencing the
program easily changes thecout of range numbers back to normal. Can
Disk Fixer keep a program from being resequenced?--you bet!Let me
demonstrate this process on the following two line program:

100REM COPYRIGHT 1984 NAVAR

ONE INDUSTRIES |

200 PRINT “THIS PROGRAM IS P

ROTECTED FROM ALTERATION AND

LISTING BY DISK FIXER"
Figure 4 shows how the program is saved on disk. Figure 5 shows the
changes you make using Disk Fixer to protect the program.

FIGURE 4

NAVARONE IND. ##% DISK FIXER V2.0 #* SECTOR DUMP SECTOR ADDRESS Q022

ADDR = 01 23 45 67 89 AB CD E ¥ INTERPRETED

0000 = 0009 3768 3761 37D7 OOCE 376A GUGA 37B2 +%7hia7Weli7 772
0010 = 479C C743 5448 4953 2050 S24F 4752 414D CHCCTHIS PROCRAM
0020 = 2049 5320 5052 4F54 4543 S445 4420 4652 1S PROTECTED FR
0030 = 4F4D 2041 4C54 4552 4154 494F 4520 414E OM ALTERATION AN

. 0040 = 4420 4CA9 5354 494E 4720 4259 2044 4953 D LISTING BY DIS
0050 = 4B20 4649 5845 5200 269A 2043 4F50 5952 K FIXER®&* COPYR
0060 = 4947 4854 2031 3938 3420 4E41 564) 524F ICHT 1984 NAVARO
0070 = 4E&5 2049 4E44 5553 5652 4945 5320 00AA NE INDUSTRIES %%
0080 = 3FFF 1103 0000 0002 0003 C445 AD4F 3320 7#=ssesssssDEMO3
0090 = 2020 2020 CON0 0NO0 0OO! OO0 GONO 0000 R A
NUAO = 0000 0000 0000 2200 0000 0N00 O 0000 HFEERMisEsEe st ,
OUBO = 0000 G000 0000 (OO0 00UO 0UOD 0000 DOD(Sttt trres
0UCO = 0000 0000 DOGO BOVO 0000 GODO DOOH QUOD & swites skt
0UDO = 0000 0000 000D 0UO0 0000 000D 0000 D000 =&mEwssstsises
OOED = 0000 0000 0000 0000 0000 0000 DODD 0000 % EREmRrLEEEEEE
VOKD = 0000 0000 0000 0000 0000 O G000 0000 F*sstrrEressrrrs ..

Page 16

FIGURE 5
NAVARONT INDL =52 DISK FIXER V2.0 5% SECTOR PP SFCTOR ADDRESS (2
ADBR = 01 27 495 67 B9 AR CD EV INFFRPRETED

(HrH)
LI
(4020
TARW
AN

(RI0W 3768 3761 37D7 QOO0 376A FREE 37R2 '“"“‘Fh?:aFl-.‘“";:'?_j'?f"ﬂ'?z
474¢C C743 5448 4953 2050 5241 4752 414D GRHOCTHTS PROGRAN
204Y 5320 5052 4154 4543 S445 4420 4652 IS PROTECTED FR
4EAD 2041 4054 4952 4154 494F 4120 414 O ALTFRAI 10N AN
44X 4OAQ 5154 LYAE 4770 4259 2044 4953 D LISTING BY DIS
(KOS 4B20 4649 HB4AS 5200 2794 2043 4F50 5032 | FEXER='S COPYR
{JLH) 4947 4854 2031 3938 3420 4141 HOH4T S24T IGHT LIRS NAVARD
(HEY = 4145 2049 4844 5557 2492 4947 SIHY GOAA N INDUSTR S
LI HEE TH)S D000 QU2 0003 CA47% 404V 33720 DRSS R L EERAIEN()
(e) 2020 2020 0000 0000 000N OO0 Q000 () AR
1A QUOO OGN 2200 0000 OO00 OO OO0 seaseersesssanes
EH) D) Q000 0000 00D VOO0 UOOD GOD0 QOO0 et e nan n g
(UK) QOGO OO0 0000 ONOO 0000 Q00N CODD O S per s
[HHH) GOEKY 000G 0000 DK () ODODG OO DEHMY esssssne i amms
(i)f COENY QUK 00400 QOO0 OO NG 06060 (OO St nrrsan
BOLO < O BOOG 0000 DOOD Q000G (000 QM) O '*"5"-":":'-"5'-'""”:'_-"-"-"“"?-'“?7"?: it

(VI L I TR O |

g I

LI VR | I |

it would be pretty mean of me to make you scan both entire sector
print-outs for the four changes, so I'll spell them out. Type in the pro-
gram in Basic EXACTLY as it is shown above. If YOu put in one extra
space, the addresses won't match up with the instructions below.
Thereisn’ta space atthe end ofthe REM statement. Save the program
to a blank initialized disk.

1. USE DISK FIXER TO READ SECTOR >22 INTO MEMORY

R 22,1 {ENTER]
2. RETURN TO THE DISK FIXER COMMAND MENU BY PRESSING
‘ENTER'. |

3. GHANGE LINE NUMBER 200 TO 0 BY ALTERING WORD >8 (00C8)
TO BECOME 0: .
A 8 [ENTER] 0 [ENTER]

4. CHANGE LINE NUMBER 100 TO 65535 BY ALTERING WORD >C
(0064) TO BECOME >FFFF:

A C [ENTER] FFFF [ENTER]

5. ADD ONE TO THE LENGTH INDICATOR FOR LINE 100 (THE REM
STATEMENT), WHICH IS LOCATED AT WORD >58. THE CURRENT
VALUEIS >269A. The FIRST BYTE(>26) IS THE LENGTH AND THE
SECOND BYTE(>9A) IS THE TOKEN FOR THE REM COMMAND. WE
ONLY WANT TO CHANGE THE FIRST BYTE TO >27. SO BE SURE TO

Page 17

RE-ENTER THE SECOND BYTE. THIS IS DONE WITH THIS KEY
SEQUENCE:

A 58 [ENTER] 279A [ENTEH]

6. LIKE THE PERIOD AT THE END OF A SENTENCE, BASIC LINES
USE >00 TO MARK THE END OF THE STATEMENT. WE'LL CON-
FUSE THE INTERPRETER BY PUTTING TWQO CONSECUTIVE
“PERIODS"” AT THE END OF THE REM STATEMENT. TO DO THIS
CHANGE THE LAST SPACE CHARACTER (>20) AT BYTE >7D T0O
>00:

A 7C [ENTER] 5300 [ENTER]

7. ALL THAT'S LEFT TO DO IS TO WRITE THE ALTERED SECTOR
BACKTO DISKWITHTHE "W’ COMMAND AND TEST THERESULTS
BY LOADING THE PROGRAM INTO BASIC.

Once the program is loaded into Basic, LIST it and see that only the
REM statement appears and it is now line number 65535. Run the pro-
gram and the PRINT line works just fine. Now, for the acid test, try 1o
change the line numbers with the RES command. You'll notice a short
pause followed by the loss of the screen’s syncronization followed by a
flurry of color bars. What has happened?

This is only speculation, but it seems the execution of the RES instruc-
tion causes the interpreter to search for line numbers buried within
statements such as 100 GOTO 130. We have altered the beginning and
end of aline, so perhaps itis attempting to find the end of the program.
The screen loss occurs when the addresses memory-mapped for use
by the Video Processor are inadvertently accessed, causing the sync
loss. However it works, it's effectivel!

Now that you've seen how it works, let me give you the general pro-
cedure so you can protect your own programs from prying eyes.

GENERAL PFIOCEDUHE FOR ALTERING A PROGRAM SO IT CAN'T
BE LISTED S

————g— "

To prevent a program from being listed or altered, make your first and
last program statements REMSs, then four changes must be made:
change the highest line number to >0, change the lowest line number
to >FFFF, add one to the byte that contains the statement length of the
. first REM, and change the final “space” character (>20) to >00. Can't
‘.. figure out how to do this?--let me spell it out:

1. Make the first line of your program a REM statement. Be ;;ure no

Page 18

transters (e.g. GOTO, GOSUB) are made to this line. If you use a com-
bination of letters that aren 't likely to be duplicated elsewhere in your

‘program (such as (100 REM ZCFIRST), you can use the Disk Fixer's

FIND STRING (F) command instead of having to hunt fo the line
manually.

NOTE : DISKETTE VEFISIONS OF DISK FIXER DO) NOT HAVE THE
"FIND STHING COMMAND F 27 | s L JSJEAL:

2. To make it easy to find the last entry in the stored program'’s line

number table, make your last line another distinctive statement, such
as 30000 REM ZCLAST

3. After saving your program to disk, use Disk Fixer to locate the start of
the Line Number Table. Since this will be stored on the first sector of

the program, you can find the sector number by reading the file's Direc-
tory sector.

Example, If the name of the file where the Basic program is stored is
"MYPROG"”, use the following Disk Fixer command:

F 1,211 [ENTER] (you will be prompted to enter the string to
search for)

MYPROG [ENTER)]
The drive will start clicking off tracks until the string is found. Whenitis

found, press D [ENTER] to display the directory. Byte >1C of the direc-

tnry gives you the first sector number of the file.

Hemember you can ellmlnate searching for the first sector if the pro-
gram is saved to an empty disk, for then you know that sector > 22 will

be the beginning sector. You can copy the program to whatever disk
you want after all the changes are made.

4. When you have found the Line Number Table, alter the word at loca-
tion >8 to >0. This had been the highest line number used and now
you have changed it to zero. :

9. Finding the highest line number in step 4 was easy because it will

always be in the same place, not so with the lowest line, its location will
depend on the length of the program. If the program has more than 62
lines, the Line Number Table will require more than one sector.

Thisis where making our highest numbered REM a distinctive charac-
ter string pays off. If the statement-- 30000 REM ZCLAST--is the last
statement we entered, it will be the first statement following the Line
Number Table. The Line Number Table always re-sorts its contents

1when a new line is added, this isn't true for the Statement Table. Pro-

Page 19

A L Foor

L
!

L, 8324

gram statements are added to the top of previously entered statements
regardless of their line numbers. Let me go off on a tangent and give
you a simplified example of hewthis works. I'll symbolize the line num-
ber and statement tables so it will be easier to follow.

Suppose a program is typed in as follows:

1 REM 1
2 REM 2
3 REM 3 |
We would have a Line Number Table ordered like this:

0003
0002
0001
And the statement table would line up as:
REM 3
REM 2
REM 1
However, if the statements had been entered in this order:

1 REM 1

3 REM 3 |

2 REM 2
The Line Number Table would look the same, but the statements
would be stored in a different order:

REM 2

REM 3

REM 1 |
Therefore, if you want to make it easy on yourself, you'll make sure 1
REM ZCFIRST (or something similar) is the first line you enter and
30000 REM ZCLAST is the last line entered. If you want to add the list-
ing and alteration protection to a program you've already created, and
if the first line isn't a REM you've got a problem. Not an unsolvable pro-
blem, mind you, just some extra work that| will explainlatter. First, let's
get back to the easier example where the REMs have been entered

correctly.

You can find the sector that contains the lowest line number entry by
having Disk Fixer search for that ZCLAST sequence. Look at this sec-
tor and find that table entry for line number >0001. Alter the word thgt

contains “0001"” to.become “FFFF".

6. With these first five steps you have changed the Line Number Table
so that only the first REM will show if the program is listed. Now let's
Page 20

finish the process by preventing the RESEQUENCE command from
undoing all our hard work. We do this by altering the stored format for
our 1 REM ZCFIRST statement. Atleastit's easy to find, it will be on the
last sector of the file.

Find the program’s last sector and display its contents. It will be stored
as the byte sequence 0B9A205A4346495253542000. Of course, Disk
Fixer displays sector contents with spaces between bytes, so the
sequence will appear as:

OB 9A 20 5A 43 46 49 52 53 54 20 00

To prevent resequencing, change that first “0B” to "0C"” and that last
“20"to“00". To verify that you did this correctly, display the sector after
you have made the changes and you should see the following
changed format:

0C 9A 20 5A 43 46 49 52 53 54 00 00
If you see something else, you screwed up.

WHAT IF | WANT TO USE THIS PROCEDURE ON AN EXISTING
PROGRAM?

As|said earlier, thisinvolves alittle extra work. | discovered three ways
to do this. The first way is very tedious if the program is quite {ong. You
add the REMs 1 REM ZCFIRST and 30000 ZCLAST and then you edit
every line, retyping the first character of each statement. This puts the
program in the correct order and you can see the general method. A
semi-trained ape could use this method, but he's going to need a {ot of
bananas if it's a 500 line program.

The second method took verylittle time, but required a lot of expertise
to understand the complex change that had to be made to the State-
ment Table. I'm not even going to bother to describe it because the
third solution is a piece of cake and equally effective.

The easy way is to change that last program statement into a REM so
we can use the general method. We need to replace that missing line,
of course, orit's highly doubtful the program will run as it was intended.
Let’s step through this process :

1. Make a copy of the program or at least have a printed listing of it.

2. Load the copy into Basic and RESEQUENCE it. Save the copy back
to disk. This step isn't essential as long as none of the line numbers are
consecutive, e.g. 200, 201.

3. Fire up Disk Fixer and find the last sector of the program. Display this
Page 21

3

-
;k—‘

o

sector and find the last program statement. You can recognize the last
statement by scanning for the byte sequence AA 3F FF that will come
after the last statement. + .

4. Right before the “AA” byte will be the end of statement marker “00".
Follow this backwards until you come to another “00"”, which will be the
end marker for the next to last statement. The first byte after this “00"
will be the length indicator for the statement we want to changeinto a
REM. Add oneto the length and alter the byte with the new value. After
the length indicator will be the token for the statement's command.
Don'tworry about what it stands for, changeitto “9A" (the REM token).

Changethe remaining bytes to “41" (the code for the letter “A”)except

for the one just before the “00”. Make it into a second “00".

Do you see what we did? We have changed the format of whatever the
last statement was into a non-resequenceable REM statement. Let me
give you an actual example in case my instructions are confusing.

if the last bytes of the program are:

00 08 9C C7 04 54 45 53 54 00 AA 3F FF
We would alter them to become:

00 09 9A 41 41 41 41 41 00 00 AA 3F FF

9. Exit Disk Fixer and return to basic. Load the programcopy and listit.
Scan the statements until you find the new REM statement made of
“A”s. Note the line number and view the original program to see what
was lost. Go back to the copy and type in the lost line using a fline num-
ber one greater than the REM statement. This will restore the program
to original form. That added REM statement won't hurt a thing even if
other program lines reference it. |

6. Typeinthe 1 REM ZCFIRST and 30000 REM ZCLAST statements.
Save the program back to disk and return to Disk Fixer.

Now all you have to do is alter those line numbers using the general
method given above. No need to make the last statement Resequence
proof, as step 4 already took care of that.

After you've done a couple of these, you shouldn't have any probilems.

1-5 CREATING PROGRAM ODDITIES

After going through all the details of the listing/alteration protection,
you deserve a rest. Let's create a couple of bizarrely numbered pro-
grams. Theseare sure to raise a few eyebrows when they are listed out
by the unsuspecting. These examples have little practical use, but they

are a lot of fun.
Page 22

1-5-1 A PROGRAM THAT “DOESN'T DO WHAT IT IS SUPPOSED

-TO DO”

Did you ever see those computer quizzes that test your knowledge of
programming by having you analyze the flow of a program and predict
what will occur when.the program is run? Of course, those tests
assume the program wasn’t created with Disk Fixer!! Take the follow-
Ing example:

WHAT WILL BE PRINTED WHEN THIS PROGRAM IS RUN?
100 REM PROGRAM QUIZ #1
110 PRINT “ALL 1S NOT WHAT IT APPEARS TO BE”

“Come on, don’t insult my intelligence”, your friends will say. We
wouldn’t do that, but we will pull their leg a little. Run the program for
mister-know-it-all and look what appears:

THE DARK SIDE OF DISK FIXER STRIKES AGAINH
Can you figure out how this is done? Answer: two tricks are involved.

(1) Line 110isn’t a real PRINT statement. It is actually part of the REM
statement that has wrapped around the screen. “110” only looks like a
line number!

(2) The realline after 100 is invisible because its line numberis greater
than that of the last line in the program, which is an altered REM. The
hidden lines are:

110 PRINT “THE DARK SIDE OF DiSK FIXER STRIKES AGAIN!I"
105 REM
HOW TO MAKE THIS PROGRAM
1. Type in the code as follows:
100 REM PROGRAM QUIZ #1bbbb1
10 PRINT “ALL IS NOT WHAT IT APPEARS TO BE"

Thisis how line 100 will appear on the screen whenitis typed. The fake
line number will line up correctly when the program is listed. The four
“b"s are only there to show how many spaces are needed between the
two “1”s

110 PRINT THE DARK SIDE OF THE DISK

FIXER STRIKES AGAINII"

120 REM
Page 23

M2 3

2. Save it to disk and engage Disk Fixer. The line number to cha‘nge Is
at word 8. Hemember, it's in hexadecimal notation, so look for 0078,
not 120. Alter it to become 0069 (hex for 105).

3. Write the sector back to the disk and give the program a test
drive in Basic,

1-5-2 A PROGRAM WITH LINE NUMBERS THAT RUN BACKWARDS??

Remember, Basic arranges line numbers for your convenience, it
really doesn'’t care what order they go in. Why?--because the real line
number is the actual memory address where the line is stored in con-
sole memory. When the Basic Interpreter encounters aline number in
a statement such as GOTO 100, it has to look up the memory
address before it can continue.

Let's make an inverse numbered program. Start with the “legal”
program:

1 PRINT “RUN";N
2FOR X=110 10

3 PRINT X

4 NEXT X

5 PRINT ::

6 N=N+1

7G0TO 1
Run the program to see what it is supposed to do. Stop the program
and change line sevento 7 GOTO 6. We do this because we are going
to change the line number of the first line from 1 to 6.

Save it and use Disk Fixer to reverse the line number order tc become
6,5,4,3,2,1,7. Why didn't we change 77 If we did, the rest of the lines
wouldn’t list and we wouldn’t see our resulis.

If you are becoming proficient with Disk Fixer, you should be able to
make the changes in less than a minute. The last line number can

., always betoundatword 8 ofthe program’s first sector. We want to start

our changes at the next to last line number, so we add 4 bytes to 8,
which tells us word >C is where the tirst change needs to be made.
Less experienced users would probably scan the sector for the value
0006. | use small line numbers in most examples so you won't have to
make hexadecimal to decimal conversions when manually searching
for line number values.

Page 24

Once you have displayed the first sector, you can zip through the

_needed changes with this key sequence:

A C [ENTER] 1 [SPACE]} [SPACE] 2
[SPACE] [SPACE] 3 [SPACE] [SPACE] 4
[SPACE] [SPACE] 5 [SPACE] [SPACE] 6 [ENTER] W [ENTER] Q [ENTER]

After the reversed program is saved back to disk, all that's left to do is
load it back into Basic. List the program to see the change. Run the

program to see if it still works normaily.

Test your proficiency at changing line numbers. Create the following
program on your own:

OFOR X=1TO 10

C PRINT X
0 NEXT X

50000 PRINT ::
Duplicating line numbers doesn’t cause any problems, unless you

transfer program control with a GOTO, GOSUB, IF...THEN, etc. If any
of these use a line number that has been duplicated, the program will

transfer control to the line number nearest the end of the Line Number
Table:

0GOTO 1
1 PRINT 1
1 PRINT 2
1 PRINT 3
When this program is run, only “3” will print.

2. UNPROTECTING PROGRAMS AND DISKS

WARNING: UNAUTHORIZED DUPLICATION OF COPYRIGHTED
MATERIAL IS A VIOLATION OF U.S. LAW.

I dq not advocate program piracy, as | co-authored a game program
that lost substantial sales due to pirating. If you COpy a program in
order to avoid having to pay for it, you are a thief. It's no different
from shopilifting.

However, legal owners of software are allowed to make additional
copies strictly for their own use as protection against damage. This
section is included in the hope that you will never have to use my
instructions for fixing disks. Itisn't cost effective to save the $2 costofa

back-up disk and risk throwing away hundreds of hours of hard work

Page 25

you spent creating the contents of a disk. | learned my lesson the hard
way. The University of Hard Knocks has an extremely high tuition, but
you're not likely to forget the lessons. If you spend $100 on a program
disk, $2 is cheap insurance.

“Wait a minute”, you say, “l would gladly make back-up copies, but
when | try all | get is a warning that the disk is ‘proprietary’ ”. Yes you
used to have a problem, but not any more--you own Disk Fixer! You
can remove the company protection in seconds and then make the
number of extra copies your particular level of paranoia warrants.

2-1 REMOVING THE COMPANY DISK PROTECTION

The Tl protection is pathetically weak. { assume the company was rely-
ing on the read/write sector subroutine that is the heart of Disk Fixer
remaining a deep, dark secret. Without Disk Fixer, knowing how the
protection works is of little value.

A disk is protected by giving byte > 10 on sector 0 a value of > 50 (which
is the ASCIl code for “P"). To unprotect a disk, you simply change the
>50 to >20 {the “space” character). It's as simple as that.

2-2 COPYING DISK WITH “HOME BREW" PROTECTION

Since the company protection is so easily broken, many independent
programmers develop more effective methods, they built a better
pirate trap. These protection schemes fall into two general groups:
those that use standard tract and sector formatting and those that
don't. Disk Fixer can duplicate the first type of disks, but usually it is
ineffective against the second. We'll look at both kinds.

2-2-1 PROTECTION BASED ON STANDARD TRACT AND SEC-
TOR FORMAT.,

When you initialize a new disk, the Disk Controller marks it with a pat-
tern of sector addresses that are similar to house addresses. These
addresses are used to find data that has been stored on the disk. If all
of these addresses are numbered as they are supposed to be, the disk
is standard format and can be copied by Disk Fixer.

There are many ways to protect disks. Some assembly language pro-
grammers will purposely destroy File Directortes and then use a spe-
cial subroutine to load the data sector by sector. Another method isto
erase part of the header on sector 0. You can still load programs from
the disk, but if you try to copy them with the Disk Manager you willgeta
“DISK NOT INITIALIZED” message instead of your copy. None of
these methods will prevent you from duplicating the disk.

It's atedious process. You use Disk Fixer to read all 360 sectorsonone
Page 26

o

disk and write them to another. i you don't get any bad sector
messages, the deed is done.

.. 2-2-2 NON STANDARD PROTECTION METHODS

The release of Disk Fixer panicked many software companies. Pro-
grams that once were safe from most pirates became vulnerable to
large scale theft. The first version of Disk Fixer was sold on disks and
people didn't hesitate to use it to unprotect itself. Now it is only sold
on module.

PSEUDO NON STANDARD PROTECTION METHODS

Creative programmers discovered ways to make Disk Fixer users
think they were dealing with non-standard disk. When Disk Fixer tries
toread these damaged areas, it will indicate a bad sector. Of course, all
you have to do is ignore these messages and continue copying all of
the good sectors and you will get a working disk.

A tairly good way to throw most pirates off track is to use assembly
language to initialize an odd number of tracks, perhaps 30 instead of
the usual 35 0or 40. The program on the disk would check the last sector
on the 29th track and the first sector of the 30th track. If these regis-
tered good/bad respectively, the program would execute normally. If
the sectors came out good/good or bad/bad, the program knows it
isn't on the original disk and will refuse {o run. If you are REALLY
knowledgeable in assembly language, you simply initialize a disk with
the same number of tracks and then copy thedisk onit. Not many peo-
ple know how to do this, but there is a way around it.

HOW TO UNPROTECT A DISK THAT ISN'T FULLY INITIALIZED.

To do this, we make use of another fine Navarone product, the
WIDGIT. The Widgit has a reset button that will halt the disk initializa-
tion at justthe right point with no ill effects. You might be able to use the
console on/off switch, but it's chancy.

First, you have to test to see if the disk is not fully initialized. Use the
Disk Manager to run a non destructive test on the disk in question. Itis
not fully initialized if the first bad sector is evenly divisible by nine and
all the remaining sectors are also bad.

Example: if the first bad sector is 90 (90 is evenly divisible by nine) and
sectors 91-359 are bad, the disk is only partially initialized. Here's what
you do to make an identical disk:

* Install the Disk Manager into your Widgit and plug it into your con-
sole. You have to use a disk that has never beeninitialized so there will

Page 27

be no tracks already formed. luse aone pound magnettobulk erasea
formatted disk and this removes any previous tracks.

* Divide the number of the first bad sector by nine (90/9=10)--this
tells you when to halt the initialization process.

* Withyour finger ready on the reset button, start the initialization. The
number you got from the last step tells you how many “clicks " to listen
for from your drive. In our example, we woulid listen for 10 clicks and
just as soon as we heard number 10 we would press the reset button.
You have to be quick, but it's easy to hit it just right.

* Use Disk Fixer to test the disk. i the next to last sector (inthiscase 89

or >59} is good and the next sector (90 or >5A) is bad you did it right. If
not try again.

* Nowthatyou have the disk, all you need to do is have Disk Fixer copy
all of the good tracks from the original to the copy.

DISKS THAT HAVE TRULY NON STANDARD FORMATS

You're out of luck--Disk Fixer is powerless against these. My new pro-
tection system uses this method and without giving away any house
secrets, I'll tell you a little about how | do it.

| analyzed the assembly language instructions c¢ontained on the read
only memory (ROM) inside the Disk Controller. With a lot of
experimenting, | learned how to alter the addresses of just a few sec-
tors. The protected program stored on these special disks contains a
subroutine that can detect these address changes. It knows when it is
residing onthe original disk. lt works sowell that | named it CIPHRDISK
and it is available for licensing .Serious inquiries can be sent to:

BILL GRONQS

9505 2 SE 15th SUITE B

MIDWEST CITY, OK 73130

Now we leave disk protectioq and examine program protection.

© 2-3 UNPROTECTING EXTENDED BASIC PROGRAMS

This is an easy task, if you understand how hexadecimal “twos com-
plement” arithmetic works.

To illustrate this protection, we'll create two BASIC programs. If you
startwith ablank initialized disk, you won't have to search forwherethe
two programs have been stored. Enter Extended Basic and Type inthe
following program:

Page 28

1 REM
Now save it unprotected with the following command:

SAVE DSK1.TEST1
Next, save it to a new file in protected format:

SAVE DSK1.TEST2,PROTECTED

We can now plug in our Disk fixer modules and inspect these two pro-
grams. Since the disk is empty, the unprotected program willbe stored
at sector >22. Bytes 0 and 1 ofthis sector contain the value >0005. The
protected program is stored at sector >23 and its first two bytes con-
tain the value >FFFB. Hexadecimal value >FFFB is the twos comple-
ment of >00035. Another way of looking at twos complement numbers
is as positive and negative values. The value >FFFB can be con-
sidered as ->0005. This is how assembly language handles nega-
tive values.

So, if you want to unprotect an Extended Basic program, all you have
todoischangethe valueinthe firsttwo bytes of the program’s first sec-
tor into its twos complement value.

If you can do hexadecimal arithmetic, this can be done by subtracting
the value from >FFFF and then adding one. E.G.,>FFFF-FFFB
=2>0004. Add one and you get >0005. Usethe Disk Fixer Alter(A) com-
mand to replace >FFFB with >0005, save the changed sector to the
disk with the Write(W) command and the protection is nullified!

3. USING DISK FIXER TO REPAIR BAD DISKS

Disk Fixer is like a bottle of glue: it'll put an arm back on a broken
figurine, but it won’t be much help in putting a pile of plaster dust back
into the shape of a statue. If your prize disk accidentally got picked up
by the magnetic cranethatlifts carsin junk yards, | recommend you try
using Buddhist chants or prayers to Saint Jude because Disk Fixer
iIsn't going to do you a bit of good.

Disk Fixer has saved three disks of mine that had blown bit maps
(located on sector) and can handle a variety of other disk diseases.
Here is a brief run down of maladies for which Disk Fixer is a specific
remedy, plus the difficulty of the required operation:

" BLOWN BIT MAP/DISK HEADER (S“ECTOH 0)--VERY EASY.

-h-""h.____'___ - ———— W . .

* BLOWN DIHECTOHY LINK MAF’ (SECTOR 1)--EASY.

* FILES DELETED BY ACCIDENT--EASY IF NO NEW FILES WERE
WRITTEN TO THE DISK AFTER THE DELETION OCCURED.

—_——

Page 29

" DAMAGED SECTORS OF BASIC PROGRAMS OR TEXT FILES--
PARTIAL DATA RECOVERY IS FAIRLY EASY.

" BLOWN FILE DIRECTORY (USUALLY SECTORS 2 TO >21)--
DIFFICULT TO VIRTUALLY IMPOSSIBLE).

The above text is the course listing for the Floppy Disk School of
Medicine. Completion of this program results in the award of a degree
in Su_rgical Discology.

First, let me differentiate between blown and damaged sectors. Blown
sectors are those that have had the data changed, but still have the
proper sector and track addresses. Blown sectors can be reused
because they can still be re-written.

Damaged sectors, however, can not be reused unless you re-initialize
the disk. These sectors have had their identification markings altered
or destroyed. You cannotread these markings with Disk Fixer, norcan
you repair them. If your disk has encountered a stray magnetic field,
you will have some damaged sectors.

It's easy to tell if a sector has been blown or damaged; Disk Fixer will
read or write to blown sectors, but it will indicate an error if you try to
access a damaged sector. Let's start your lessons with the easiest
case.

3-1 HOW TO FIX A BLOWN BIT MAP (SECTOR 0)

Ruined Bit Maps may go undetected. Even if this sector is com pletely
lost, you will be able to load Basic programs, read TI-Writer files, etc.
You may not know the Bit Map sector has been lost until you try to
catalog or copy the disk with the Disk Manager and you get the “DiISK
NOT INITIALIZED” message.

The danger of an altered Bit Map looms into view when you save more
data to the disk. For instance, if the Bit Map sector was changed to all
zeroes, new data would be saved on top of data already on the disk--
the Disk Controller thinks all those sectors are still available.

Page 30

Fixing bad Bit Maps is a piece of cake. Even if sector 0 was completely

‘erased, you can easily recover every bit of data stored on the disk.

A quick fix is to copy a good sector 0 from another disk and write it to
the sick disk. This restores all the initialization data but not the bit map.
You can now read or write to the disk, but since you no longer have a
correctbit map to indicate which sectors are used and which are avail-
able, writing to the disk will likely overprint files on top of good data. No
problem! Simply make a back-up of the fixed disk with the Disk
Manager and reinit. the fixed disk for re-use.

Be sure that the disk you copy sector 0 off of is the same type as the
disk you are repairing; e.g., if it is a double-sided disk, copy sector 0
from another double-sided disk.

WHAT DO 1 DO IF SECTOR 0 IS DAMAGED RATHER THAN BLOWN!

Trying to write to a damaged sector will produce an error, so copying a
good sector 0 is out. The fix is still easy, but it is tedious.

You start with an empty good disk and copy all of the sectors from the
sick disk to it. Then you simply make a back-up disk to restore the

bit map.

Copying 359 sectors from one disk to another is going to take a little
time, but it sure beats having to rewrite all of the files that would other-
wise be lost.

'3-2 FIXING BLOWN DIRECTORY LINK MAPS (SECTOR 1)

This is almost as easy as the first case. Just as with sector 0, if sector 1
is bad the entire disk will be unreadabie by normal means.

You fix sector 1 by manually reconstructing it. You locate all the File
Directories and note the file names and which sectors the File Direc-
tories are located on. Next, you place the file names in alphabetical
order. Once this is done, creating a new directory link map is a snap.
Let's do one together.

File Directories are usually located on sectors >2->21 (2-33 in decimal
notation). First, we use Disk Fixer to scan these areas, locate all the file
directories and write down the sector number and the contents of the
first 10 bytes. These bytes are the hexadecimal form of the file names.
File Directory format is described in appendix A3. They're easy to spot
by the large number of 00 bytes towards the end of the sector.

Page 31

In our example, four File Directories were found and we wrote down
the tollowing work sheet:

LI

SEC# FILE NAME

2 4D 59 50 52 4F 47 20 20 20 20
3 54 45 53 54 31 20 20 20 20 20
4 42 41 54 54 4C 45 5A 4F 4E 45
5 4A 55 41 4E 49 54 41 20 20 20

No need to translate the hex codes into letters. The alphabetical order
will be the same as the numeric order of the file names. Just treat the
names as if they were 20 digit numbers and rank them from lowest to
highest. Write down the new order of the directory sectors:

4,5,2,3
Next, make them into four digit work values:

0004 0005 0002 0003

The last step is to use Disk Fixer to write these values to sector 1 start-
ing at the first byte (byte 0). You must start with sector 1 being all
zeroes. So, if a lot of garbage has been dumped there, change every
byte to 00 and then put in the Directory Link Map.

There is one snag that slightly complicates this otherwise simple
operation. If you delete files, the directory link map is instantly
changed, but the old File Directories will remain until they are reused.
Thus, you may find some of these during your search. They will look
like valid directories, but you don’t want to use them in re-creating the
directory map. What can be done?

You can avoid this problem by checking your list of file directories
against the Bit Map on sector 0. The directories for current files will be
allocated in the Bit Map. lf the file has been deleted, the Bit Map will
show that the sector where the old directory sits is available for reuse
Appendix A2 will show you how to read the bit map.

. The above instructions will work if sector 1 is blown. If it is damaged,
Disk Fixer will give you an error when you try to recreate the Directory
Link Map. Just as in the first corrective procedure, you are going to
have to do the tedious job of recreating the directory link on to a good
disk and then transferring all the other good secors on to the new
disk. '

3-3 WHAT TO DO IF YOU ACCIDENTALLY DELETE A FILE

If you studied the previous nperatian"on fixing blown Directory Link
Page 32

Maps, you may have already figured out how to “un-delete” a file.

when a file is deleted, the location of its File Directory sector is
removed from the Directory Link Map atsector 1. The Bit Map at sector
0 is changed to show that the sectors used by the deleted file are now
up for grabs when new files are added to the disk. The actual file is not

changed in any way. -
Aliyou do is add the location of the file’s directory back to the Directory
Link Map as explained in section 3-2. Of course, you need to change

the sector 0 Bit map to show that the file’s sectors are back in use, but
there is a simpler method of doing this.

To have the Bit Map corrected automatically, all you do is this:

1. Add the location of the deleted file's directory sector back to its pro-
per place on sector 1.

2. Copy the file to another disk.

3. Copy the file from the new disk back to the original disk using the
same name.

When the file is recopied to the original disk, its sectors will be shown
as in use and the data will be protected from overwriting.

3-4 PARTIAL RECOVERY OF DAMAGED FILES

If an important sector, such as the Directory Link Map, is bad, the disk
is unusable. In other cases, sectors within a file that actually containthe
data may be damaged and only that one file is unreadable. Disk Fixer
lets you recover the undamaged file portions which otherwise may
have been inaccessable.

\/3-4-1 BASIC PROGRAM RECOVERY

If the partially damaged sector is a Basic program, loading will halt
when the damaed sector is encountered and you’'ll get the “WARNING,
CHECK PROGRAM IN MEMORY” advisory. Most of the program
could still be good, but the Basic Loader refuses to let you see any

of it. .

Whatif you had a 500 line program with a single bad sector? If you had
a listing, you could type the program back in, but that would be a big
job--especially if you didn’t know how to type. if the bad sector was in
the Program Statement Section, you wouldn't have to reenter the
entire program, just the lost lines. The Basic Editor wont let you do
this, but Disk Fixer will!

Even if you don’t have a program listing, partiai recovery will aid you in
Page 33

rewriting the program if it is one of your own creations. You may be
able to salvage valuable subroutines or perhaps all you will need to do
isreprogram a few lines that have been lost. Before| getyour hopes up
too much, let me explain the limitations of this process.

The partialloss of a Basic program could have occured inthree places:
theFile Directory (which has nothing to do with the Basic programand
will be covered separately in section 3-5), the Line Number Table, or
the Program Statement Table. The diificulty of the recovery will

depend on where the damage occured, so let's look at what we can
hope to achieve from each section.

BAD LINE NUMBER TABLE |

Earlier in this booklet, | explained how Basic program lines will be
saved In reverse consecutive order if they are entered in their proper
sequence and none of the lines were edited. If this is the case, we can
compute all statement starting addresses and put in new line num-
bers. There is a problem. If any of the statements transfer program
control to another line number, such as GOTO 100, we have to know
which of the lines was the old number 100. We may be able to figure
this out by analyzing the program, but then again we may not.

If the Line Number Table was not saved in consecutive order our job
becomes more difficult. We can reconstruct all the lines, but we can’t

be sure what order they go in. This could be very tough if the program
was written by someone else.

BAD PROGRAM STATEMENT TABLE

In this case we can amputate the bad sectors and replace them with filler

material. Then we can get a listing of what's left and try to work it out
from there. The missing statements will show u p asline numbers only.
The recovered listing will be something like:

100 PRINT “SAMPLE PROGRAM"

110 PRINT “AMPUTATED LINES"
120 FOR X=1TO 100

130 PRINT X

140

150

160

170 REM INTEREST SUBROUTINE
180 INT=R"'P

190 RETURN

Ifyou have a printedlisting of the program, all you need to do is fill in the

gaps. If you don't have a listing you'll have to recreate those missing
Page 34

lines by analysis. If the program has been heavily damaged, you may
have to deduce the entire animal from its jaw bone.

Since the bad Program Statement Table is the easier repair to des-
cribe, we'll start with it. We'll use the simplest example: a program with
one damaged sector. .

PATCHING A BAD PROGRAM STATEMENT TABLE

Our patient is a middle-aged male basic program. When we try to load
the program into basic we get an error message. We take an “x-ray’of
the patient by using the disk manager to do a non-destructive test. The
test results indicate sector 36 (hex >24) has a bad address code. The
cause could have been a scratch, a piece of dust or a memo magnet
your wife used to pin your priceless disk to the ‘fridge so you wouldn’t
lose it. Your trained eye scans the sector contents displayed by Disk
Fixer and you see that the line number is complete. The bad sector
took a hunk out of the middle of the Program Statement Table. it's a
text book case and the school solution is a sector by-pass operation.

Your pre-operative preparation is to make a program filler out of an
unused disk sector. To do this, make a sector which has 00 in every
byte location. The quickest way to do this is to copy sector 1 from a
blank initialized disk. Note the sector address of the filler.

The by-pass must be performed on the program’s File Directory. To
find this, use the Find string (F) command in Disk Fixerto search forthe
file's name. Display the indicated sector. Figure 6 is a print out of our

example program.
PIe prog Figure 6

NAVARDNE IRD. #%¥ DISK FIXEF V2.0 % SECTOR DUBF SECTGR ADPDRES
AR = @1 23 45 &7 29 4B €0 EF INTERFRETER

- 4+ ¥ W= r

F.
Gl g

L1

Q000 = 4A%D 414F 4904 4120 2020 Q030 GIGG Q007 MANITR KRkEex
0014 = 2100 0000 000Q QGO0 09GO QOO 2ZAC 000 HIXFIXPRLRsr”>iy
0020 = Q000 Q000 0000 OO0 GOOQ G020 QRGO QOLL TEEXEYREFEERISsLY
0030 = 0GQO Q02O QOQC Q20N 0G00 CGOC Q000 DO00 FERFYRLERTKIIFIRY
0040 = 000G 0000 0000 Q000 DG GOBH 500 JN00 TERITREFLINRLEKY
0050 = €000 0000 QGO0 0000 0G0 DOCH GOO0 QGG FRYEEFRIRFYE¥EIX
0040 = Q0OG 0000 GOCO 0000 QOO0 D000 Q00D Q00D FRETTLTEEXTRLRLL
0070 = 0000 QOO0 Q00Q 0G00 Q000 GGOO GOOO GOOL IR¥RRXTITIRINEELY
R0 = G000 000 Q000 QGO0 QOO0 O00% D300 JGOC TRREEETRLLRRELLs
0050 = 2000 000G Q000G QQQG COQ0 QOGO Q00D JUGG IXFIFRIRFENRITLY

= 0000 0000 Q00 QOOQ 0000 ODGO (DG Q000 FREFTERTERITANNR
GOBG = 0000 0GGO QOO0 0000 J00C OO0 G000 OO0 ¥RFYRRIITEIvEIQ
00CO = QOGO COOO0 QOO0 0000 0000 (00D O8O0 0308 FREtEFYERsLiites
0000 = Q00O 0000 Q000 OGOQ CCO0 Q000 CACC OO0 Freyrsrteirdysy
00EQ = QGO0 G000 D300 JGOL OG0 G000 D000 G000 REFRETRRREstRTLL

0OFQ = 0G00 0000 0000 CG0Q COOC QOGO SO0 GOO0 Trrenkyrsfritsis

Page 35

The partofthe sector we need to change begins at byte >1C. Thisisthe
Block Link and it is explaingd in detail in appendix A3. If you are not
familiar with how these work, now is a good time to review that appen-
dix. Briefly, Block Link is used to join together the fragments of a tile
that have not been stored in a consecutive block of sectors. If thereis
only one link, the file has not been fragmented and all the sectors are
continuous. Each link is three bytes long.

We perform the by-pass by adding additional Block Links to the File
Directory sector. These extra Links will point to the location of the pro-
gram filler sector. We alter the other link(s) so that the bad sector will
not be part of the file.

Our example program (figure 6) has one Block Link, so all the file sec-
tors are located in one continuous group. In the middle of this group is
a bad sector that we need to by-pass. The three bytes that make upthe
Block Link have the values 2260 00. This telis us that the file consists
of sectors:

22, 23, 24, 25, 26, 27, 28

Our program filler is at sector >5C and the bad section we need to

by-passis atsector >24. Therefore, we need to alter the Block Links so
the file structure will be:

2__2_, 23 5C 25, 26, 27, 28

i _i_ Lot e s i
Instead of one continous area of sectors for our program we now have
three. Therefore three Block Links are required. Each Link must con-
tain the location of the first sector in the block and also the highest
numbered sector withinthe block. There are seven sectorsin the block
and these are numbered 0-6. Sector > 22is number0, sector > 23is

number 1, sector >5C is number 2 and sector >28 is number 6. So,
our Block Links will be:

22 10 00 ZREIP S
5C 20 00 ipor o T T
25 60 00 “ £ ey

if you don t understand the pecullar forrnat Block Links have, you need
to take a look at appendix A3.

Page 36

We are now ready to perform the actual by-pass operation by writing
these nine bytes to the File Directory sector starting at byte >1C. The
by-passis finished. If you have done everything right, the program will
now load in Basic and you can list it and view the gap where the filler
has been inserted. .

For practice why don’t you create this file, pretend sector >24 is bad
and perform the by-pass. Start with an empty initialized disk. Use Disk
Fixer to copy sector 1 to sector >5C to create the needed filler. To
create a Basic program that will not have any of its Line Number Table
in sector >24, type in the following line 15 times. Use different line

number for each line:
100 REM 1234567890123456789012345678901234567890

123456789012345678901234567890123456789012345678901234567890

Savethe program, performthe by-pass asoutlined above and view the
results. Two lines have only line numbers followed by blanks and one
line has been partiailly lost. The important thing is that 12 good lines
have been recovered. This recovered portion could have been several
hundred lines of coding if this had been a long program.

For additional practice, pretend sector >28 is damaged and change
the block Links to by-pass it. Since the bad sector is at the end of the

file, only two Links are required:

22 50 00
5C 60 00

Be sure the remainder of the sector following the Block Links is all
00’s.

AS you can see, it is fairly simple to patch programs that have one bad
sectorinthe Program Statement Table. it only takes abit more work to
patch a program with multiple bad sectors. As an example, assume
the sample program is bad at sectors >24 and >25.

We are going to need two sectors of filler material, so copy sector >5C
into >5D. Three Block Links are required for the by-pass:

22 10 00
5C 30 00
26 60 00

Page 37

What if we had two bad sectors that were not consecutive, suchas >24

and >26?7 Simple? We dn a duuble by-pass and the Block Links
would be:

22 10 00
5C 20 00
25 30 00
5C 40 00
27 60 00

Did | lose you on this one? Let's take a closer look. Here are diagrams
of the original file and the patched file:

ORIGINAL FILE
SEC ORDER 00 01 02 03 04 05 06
SEC NUMBR 22 23 24 25 26 27 28

PATCHED FILE
SEC ORDER 00 01 02 03 04 05 06
SEC NUMBR 22 23 5C 25 5C 27 28

If you use tables such as these, the Block Links are child’s play to
make. This should be enough examples of statement patching. We'll
move into the trickier realm of mending Line Number Tables.

PATCHING LINE NUMBER TABLES

Thisis pretty much like fixing Program Statement Tables, butthere are
two ditferences: the filler material is different and there are several dif-
ficult complications.

The worst complication occurs when the program’s first sector is bad.
Sure, it can be patched around, but thatisn't going to help much. The
first sector contains the program's critical loading information. It tells
Basic where the Line Number Table ends and where the program
statements begin. It also has error checking values that will preventthe
program from loading if they are not correct.

It is possible to recover some data if this first sector is bad, but it is a
complicated, painstaking process that does not have general pro-
cedures that can be readily followed. As | said earlier, if the Line Num-
ber Table is completely wiped out you can still recover every
statement, but you have no certainty as to what order they go in. Have
you ever written a long program where you didn't have to edit a single
statement or squeeze in an extra line? Not likely. If any editing was
done to the program, the statements will not be stored in consecutive
order. | will limit the discussion on patching Line Number Tables to

cases where the first sector is still intact.
Page 38

It the bad sector is somewhere in the middle of the Line Number Table,
we can patch it just as we did the Program Statement Table. First, we
need to create a special filler sector that will replace all missing line
numbers with 0 and leave the rest of the line blank. To make this filler,
find an unused sector and repeat the byte pattern 00 00 37 D7 00 00 37
D7 until the entire sector is filled. Write this data to an unused disk sec-
tor and prepare to operate.

Nowthatthefiller is created, the rest of the processiis just like patching
Program Statement Tables. You create the new Bfock Links and place
them in the File Directory sector in exactly the same way.

When you list the patched programs, you will see continuous sections
of 64 blank lines that are numbered 0. These sections will occur

wherever the lost lines would have normally listed.

Thats all | have to say about attempting to fix Basic programs. While
the patching process is easy, recoding the missing section can be next
toimpossible. Textfiles are just as easy to patch and far more easierto
reconstruct. We'll look at them next.

" 3-4-2 TEXT FILE RECOVERY

Unlike Basic programs files which have a format that is very foreign to
us, text fileslend themselves to partial recovery. If we lost one sector of
a Line Number Table, the reconstruction is going to be tough. But if a
single sector of a text file was lost, we would only need to rewrite a short
paragraph. This paragraph is about one sector’'s worth of data.

Plus, text files are very forgiving. If we don't reword the missing sec-
tion in exactly the same language, no real harm will probably be done.
We may even improve on the content since it is our second crack at
it. |

Most text files the average user will produce will likely be TI-Writer
documents. | had a magazine article stored on a disk with files totaling
over 100 sectors. The disk developed three bad sectors in one of the
files and | felt like sticking my head in the oven. The bad sectors were
near the beginning of a 49 sector file. When | tried to load the file with
TI-Writer all | got was the first five sectors and then the disk error
message. It looked like 44 sectors worth of hard work had been lost.
Luckily, I had Disk Fixer. it was this file loss that got me started on the
techniques in this booklet.

| learned | could patch around the bad sectors and recover 46 sectors.
The lost sectors werre easily rewritten in about half an hour. If it had n't

Page 39

been for Disk Fixer, it would have been no iess than five hours of ﬁork.
It only took 15 minutes to patch the file.

The ac}ual patching operation is just as described for fixing Basic pro-
gram files, jt_Jst the filler material is different. The filler material isn't as
critical as with Basic programs. Anything that will readily show us the

lost areas will do. Personally, ! use a filler sector of asterisks(")
because they really stand out.

To make thg :asterisk filler, power up TI-Writer and type in eight lines,
eac.h containing 32 asterisks. Save the file to disk and all You need to
do is locate the first sector of the file. Jot down the sector number and

you're ready to patch. When you load the patched file into TI-Writer,
here’s what it may like:

THE QUICK BROWN FOX JUMPS OVER THE LAZY

iiiii**i*i*i*ii**i*itii*i****iit
iiiiiiiiiii**tii*iiii*iilitiiiii
iﬁiii***iii*i*****iitiii*t*ii**i
ii*ii*i*ti*i***iii*iii*iii***ii*
i*ii*iiiiii**iii*iliiiiii*i*ii**
iiiiii*iﬁiiiii*iiiiIiittiiiillii

iiiii***iiﬁ*iiiiiii*iiitt*ii,

TO COME TO THE AlD OF THEIR COUNTRY
3-5 HOW TO FIX A BLOWN FILE DIRECTORY

| rated this repair the most difficult because you have nothing to show
you where to begin. The sectors that make up the file could be any-
where on the disk and in any order. if the file is long and highly
fragmented you've got a tough job ahead.

If you knew the location of every sector in the file and what order they

are supposed to be in, the job would be easy. QOur example will be just
such a case.

: 3-5-1 CONSTRUCTING TEXT FILE DIRECTORIES

Our patient is a TI-Writer file that has a blown File Directory. Thefile is
32 secfors long (not counting the sector used by the File Directory) and
occupies consecutive sectors numbered >30 to >50. With this infor-

mation we can easily construct a replacement file directory by follow-
ing these steps: '

1. Find an empty sector to use for the file dictionary and note its sector

number. See appendix A2 on how to read the bit map onsector Oifyou

don’t know how to find unused sectors. Fill all the bytes in this sector
Page 40 -

with 00's.

2. We know everything required to construct the File Directory except
for one item--the contents of byte > 10. Atfirst glance, it was difficult to
see what this byte had to do with the file contents, so | had to do

some experimenting.

It seems that this byte shows how many bytes of thefile’s last sector are
actually used. If the TI-Writer document that was saved to this file did
not exactly fill all of the 32 sectors, this byte will tell the computer how
much of the last sector contains data. How do we figure this out?

Tofind this value we need to find where the last record written to the file
ends. TI-Writer ends a file by writing a tab and margin record to the
disk. This is what we need to look for in the file’'s last sector. A typical
tab and margin record will look similar to this when displayed by the

Disk Fixer:
16 80 86 B8O AD 86 8B 90 95 9F A9 D5 D5 D5 D5 D5

DS DS D5 DS D5 80 86 FF

Every line of a text file has the same format and the tab/margin record
is no exception. The first character will be the length of the line in bytes
and the last character of the line will be the end of line marker “FF".

The tab/margin record is normally the last record on the last sector
and is usually followed by 00 values, but not always. I've examined a
bunch of text files and sometimes what seems to be garbage will follow

the T/M record. |

The easiestwaytofindthe T/Mrecord isto start from the end of the last
sector and look backwards for the FF marker. Another sign post is that
string of D5 values. These are unused tab stops. If you find what seems
to be the T/M record, but you still have some doubt, count backwards
23 byfes from the FF. If this is a T/M record, the 23rd byte backwards

will be the value 16. =

Don’tlet this scare you, the tab/margin records are much easier to find
than this would indicate. Practice finding these by examining some of
your text with Disk Fixer and soon they will jump right out at you.

IF THIS EXPLANATION HAS YOU TOTALLY LOST, YOU CAN PRO-
BABLY USE A VALUE OF FF WITH NO ILL EFFECTS. | did a little
experimenting with this and found that the files will load correctly. You
may get a little garbage displayed when you load the file back into Tl-
Writer, butit's easy to clean itup. To be on the safe side, | recommend

deleting everything that shows up after the last bit of recognizable text.
Page 41

’

"‘Ih‘_‘-‘-

Some of the garbage could be invisible control characters.

Getting back to our example, the value we need is the byte location
of the T/M record’s FF marker which is shown by Disk Fixer's index
scaleslocated above and to the left of the displayed sector. In our sam-

ple case we found this value to be >8C. Now we have all the informa-
tion we need. The rest is all down Hhiil.

3. The next step is to construct the File Directory contents. It's best to
do this on paper and then use Disk Fixer to transfer the proper values
to the File Directory sector. Here are all the values:

A. BYTES 0-9, FILE NAME: 7A 20 20 20 20 20 20 20 20 20

This sequence causes the file to be named lower case z. This should,
alphabetically, be the last file on the disk and thus will make adding the

File Directory’s sector location to the File Index (located on disk sector)
very simple.

B. BYTES >A-E, FILE SPECIFICATIONS : 00 00 80 03 00
These values are always the same for TI-Writer text files.
-—""-l-l-________._ - i . — — S — . |

C. BYTE >F, NUMBER OF SECTORS IN FILE : 20

This value will vary according to the tile size. in our example, we have

32 sectors (>20). Remember, we don't count the one sector that is
used by the File Directory.

D. BYTE >10, BYTES USED IN LAST SECTOR - 8C

This is the value we found in step two. If you can't figure it out, try
using FF.

E. BYTE >11, MAXIMUM RECORD SIZE : 50
This too, will always be the same.

F. BYTE >12, NUMBER OF RECORDS IN FILE : 20

This value varies with the file size. For variable record length files (such
as TI-Writer output) it will be the same as the number of sectors given

previously in s_tQLaB. :
\:

u

G. BYTES >13-18B, FILL WITH 00’s: 00 00 00 00 00 00 00 00 00
H. BYTES >1C-1E, BLOCK LINK: 30 FO 01

This is formed just as described above in the section 3-4-1 on partial
file recovery. Block Links are explained in detail in appendix A3.

FPage 42

In this example, the file begins at sector >30and is >20 sectorsilong.
Since it is one consecutive block of sectors, only one Block Link is
needed. Within the file itself, sectors are numbered. >00-1F. The
highest sector number contained in this block will be the last

sector, > 1F. |
. BYTES >1F-21, END OF BLOCK LINKS: 00 00 00

The end of the Block Link section is indicated by these 00 byt_e's. If gar-
bage follows these values, the file will stilifunction. However, it sbestto

zero out the rest of the sector or you may hf_ve problemsifyouincrease_ »
the size of the file. |
4. The File Directory is now complete and ready to save to disk. It's a

good idea to use the Disk Fixer Dump(D)com mar!d to check over your
work--it's awfully easy to make mistakes in altering bytes.

We'll assume the unused sector you've chosen is number >A. Write
the sector to this location.
5. Last step. We need to add the location of this File Directory to the

index at sector 1. This is where naming the file “z” comes in handy.
Instead of having to reorder the entire index, all we do isadd 00 0A to

the end of the list:
BEFORE: 00 05 00 02 00 01 00 03 00 00 00 OO0
AFTER: 00 05 00 02 00 01 00 O3 00 OA Q0 00

6. Power up Tl-Writer and load the file--the name will be DSKI.z
(remember to use a small “2"). If you did everything right, you should
have your file back.

3-5-2 CONSTRUCTING BASIC PROGRAM FILE DIRECTORIES

Basic program file directories are handled in nearly trje sam?' way that
text tiles were handled in section 3-5-1. However,Basuc_usgs memory
image" files rather than “record” files, so the bytes that indicate the file
type will be different. We only need to change steps 2 and 3; the others

are the same as in section 3-5-1.

1. See section 3-5-1

2. Byte > 10 of a Basic program File Directory has the same purpose as
in text files; it indicates how much of the last file sector needs to‘ be
loaded. Figuring out the correct value is easier than for text files

because all Basic program files end identically.

-——
p—"
il -

Page 43

LAST
B TE

/'; 9F— f*"&é"
/

To find the program’s final tgcé dis
3yle, display its last sector and scan the
contents for the sequence 00 AA 3F FF. The byte containing 00 that

preciedes the AA value is the last byte of the file. Jot down the location
of this byte within the sector and save it for step three.

If for sc:u_me reason you just can’t locate this last byte, you can get away
Wfth using a value of FF. This will cause extra data to be loaded along
with the actual program, but Basjc always knows where the program

contents start and ends by using the Io
Srogram, g ad data at the start of the

3.Justasin section 3-5-1, we nowar
. ereadytocon il Direo.
tory contents. Y structthe File Direc

A. BYTES 0-9, FILE NAME: 7A 20 20 20 20 20 20 20 20 20
We name the file “z” for the Same reason we did in 3-5-1.

B. BYTES >A-E, FILE SPECIFICATIONS: 00 00 01 00 QO
These values are always the same for progr-am filgs.)

ey .

C. BYTE >F, NUMBER OF SECTORS IN FILE: 20

Eﬂo-points to remembelf: we don't count the sector used by the File
trectory and thg count is expressed as a hexadecimal number, not
decimal. Appendix A1 gives you the conversion values.

D. BYTE >10, BYTES USED IN LAST SECTOR: 8C

This is the value we found in ste : - .
P two. Plug in FF if '
the exact value. 9 you can'tfigure out

E. BYTE >11, MAXIMUM RECORD S|ZE- 00

Program files do not use records; this will always be zero.
F. BYTE >12, NUMBER OF RECORDS IN FILE: 00)
Same reasoning as with byte >11.

G. BYTES >13-1B, FILL WITH 00's: 00 00 00 00 00 00 00 00 00
H. BYTES >1C-1E, BLOCK LINK: 30 FO 01

This is formed j:ust as in section 3-4-1. It varies with where the file is
stored on the disk and how many fragments it is made up of.

l. BYTES >1F-21, END OF BLOCK LINKS: 00 00 00 "

The byte location for this wii change with the number of links. It will

follow the last link and just to be safe
, , YOU should zero ou
the sector that tollows the LNk Jjﬂmﬁi@s Lol

Page 44

Steps 4 and 5 are identical to section 3-5-1. Write the File Directory to
disk and add its location to the index at sector 1.

6. Power up T! Basic and see if itloads with the command OLD DSK1.z.
If it doesn’t, check your work again.

With both text and program files, the hardest pant of reconstructing
File Directories is locating all of the pieces if the file has been
fragmented. This requires expert sleuthing in extreme cases. If you
know where all the fragments are and what order they go in the restis

not too difficult.

APPENDIX A1
HEX TO DECIMAL CONVERSION

Rather than explain how to convert between these two number sys-
tems, this program will do the conversion for you. 've kept it “no frills”

so that it will be short and easy to type.

When first run, it will ask you to enter a hex number and then will con-

vert it into decimal and request another number. Entering a “0" for a
requested value will put you in the decimal to hex conversion mode.

Entering another “0" will place you back in hex to decimal
conversions.

100 REM HEXADECIMAL/DECIMAL CONVERSION

110 REM ENDTERING A 0 WILL FLIP-FLOP CONVERSION
120 HCR$="0123456789ABCDEF” —
130 CALL CLEAR

140 INPUT “ENTER HEX NUMBER":H$

150 IF H$="0" THEN 310

160 N=0

170 LENH=LEN (H$)

180 FOR L=1 TO LENH

190 DIG=ASC [SEG$(H$,L.1)]

200 IF (DIG>47)*(DIG<58) THEN 240

210 IF (DIG>64)*(DIG<71) THEN 260

220 PRINT H$:“ IS NOT A VALID HEX NUMBER"

230 GOTO 140

240 DIG=DIG-48

Page 45

Each sector is represented by a single bit. If the bitis a “1”, then that
sector has been used. If it is a “0’, the sector is available.

250 GOTO 270

260 DIG=DIG-55

270 N=N+DIG*16'(LENH-L)

280 NEXT L

290 PRINT H$:"=" ::N
300 GOTO 140

310 INPUT “ENTER DECIMAL NUMBER” :D
315 D=ABS(D)

320 IF D=0 THEN 140

330 DIV=0

340 IF (D/16'DIV) <16 THEN 370

350 DIV=DIV+1

360 GOTO 340

370 D1=D/16'(DIV+1)

380 HNUM$=""""

390 FORL=1TO DIV+1

400 D1=D1*16

410 D2=INT (D1)

420 HNUM$=HNUMS$&SEGS$(HCRS,D2+1,1)
430 D1=D1-D2 | |
440 NEXT L

450 PRINT D; ""="HNUMS

450 GOTO 310

APPENDIX 2
HOW TO READ THE BIT MAP (SECTOR 0)

The bitmap is an area of sector O thatis used to keep track of what sec-
tors are in use and which are still available. When a newfile is added to
the disk, the bit map is searched for the most efficient arrangement of
sectors that will store the file. Then it is altered to show that those sec-
tors are nolonger available. Likewise, when a file is deleted the bit map

Is changed to reflect the extra sectors that are now available for
use.

Page 46

The bit map begins at byte >38 of sector 0. Since a byte contains eight
bits, eight sectors are controlled by each byte. Here is adiagram of the byte
>38 to show how this works. Bits are numbered 0 to 7 from the left to

the right:

8IT MAP BYTE >38

BIT 01234567
CONTROLS 76543210
SECTOR

A table could be constructed for every byte to show exactly what sec-
tors it controls, but this would be a waste of time and paper since all
bytes function the same. Each byte in the bit map has a group of eight
sectors it controls. To find the first sector controlied by a byte we can
use the formula:

l FIRST SECTOR = (BYTE NUMBER ->38) "8 /

The highest sector controlled by a particular byte is found by adding
seven to the number of the first sector.

Example : We need to find an unused sector on a disk. We knowthat a
value of 00 in the map indicates a block of eight consecutive unused
sectors. To find out what those sectors are, we use the above formula.
In this example the byte with the 00 value is number >60. Plugging this

into the formula we get:

FIRST SECTOR = (>60->38)*8
| =>28*8
=>140
SECTORS CONTROLLED BY BYTE >60->140to > 147

If hexadecimal arithmetic makes you queasy, you can convert all the

numbers to decimal, perform the calculation and then turn the decimal
numbers for the sectors back to hex. Again using byte >60 as an
example:

>60=96 >38=2056
FIRST SECTOR =(96 - 56) *8
=40*8
= 320
. SECTORS CONTROLLED BY BYTE >60: 320-327

Page 47 N

A bitmap value of 00 means all the sectors in that group are unused. A
value of >FF meanmtnrs areinuse. Values falling between
00and >FFiells usthat some §€ctors are used and some are still avail-
able. Here’s how to tell which are which:

Example: Bit map byte >3A contains the value >0D. First we find the
first sector controlled by that byte using the formula given above. The
first sector works outto be > 10, therefore some sectors between > 10
and >17 are used and some are unused.

Next, we change the value >0D into binary and get 00001101. The
three “1's” show us three sectors are used. Likewise, each of the five
“0’s"” represents an empty sector. Going fromright to left, we can chart
this section of the bit map:

USED SECTORS: >10,>12,>13
UNUSED SECTOR : >11,>14,>15,>16,>17

If you wanted to use sector >11 and wished to prevent it from being
destroyed when more files were added to the disk, you would alter the
Othatrepresentsthatsectortoa 1, changethebinary numberbacktoa

hex number and then use Disk leer to alter byte >3A tothenew value.

Let's do it:

WITH SECTOR >11 UNUSED : 00001101=>0D
WITH SECTOR >11 USED: 00001111=>0F

Change byte >3A to >0F and sector >11 will be protected.

What if you want to figure out what part of the bit map controls a

specific sector, say sector number >22? We divide the sector number
by 8 to get a whole number and a remainder. The whole number plus
> 38 tells us the number of the bit map byte that controls that sector.
The remainder, which will be between 0 and seven, tells us the
exact bit:

>22/8=4 with a remainder of 2

44+>38=>3C
REMAINDER 7176543210
BYTE >3C 00000*00

.1
The asterisk (*) shows the bit in byte >3C that controls sector >23, If

we take a blank disk and save a one line Basic program to it, byte >~SC

of sector 0 will change from 00 to 04 to show that sector >22 is now
in use.

Page 48

APPENDIX 3

The information contained in this appendix may not be factual. The
actual formats of data recorded on diskettesis not published by Texas
Instruments and therefore not available for public use. The formats
described here are simply an interpretation of the actual format and may

not be accurate. It is however, information which you may find helpful
when using Disk Fixer to locate and recover lost data from diskettes.

Several conventions apply to the directory information.
1. All addresses and other number values are in hexadecimal.
2. A byte is an eight bit field and nibble is a four bit field.

3. Theterm ‘low order’ refersto therightmost (least significant) bit, nib-
ble, or byte in a field. The leftmost {most significant) bit, nlbble or byte
is the ‘high order’.

4. Within a byte or nibble the bits are numbered from right to left with?¢ §™ ¢ 32

the rightmostbitdesignated as bit 0 and leffmostbitdesignated as bit7
(for a byte) or bit 3 (for a nibble).

Sector 0 contains the diskette name in bytes 0-9. Bytes A and B taken
as a full word, contain the value for the total number of sectors on the
diskette. Byte C contains the value for the number of sectors pertrack.

FA R

;LZZLLL

Bytes D- Fcontam}heAﬁpllvalue“DSK" Bytes 10-13 containthe hex- ¢, f:. PR
adecimal value)('20280101 on every diskette | have examined so far.2e 2%

It may be some kind of identifier. The sector bit map, which begins at
address X'38' in sector 0, is a byte oriented table where a one bit
indicates sectorinuseand azero bitafree sector. Each byteinthemap
represents eight sectors with the low order bit representing the first
sectorinthegroup andthe high order bitrepresenting thelast sectorin
the group. For example, in byte 38 bit 0 represents sector 0 and bit 7
represents sector 7. In byte 39 bit 0 represents sector 8 and bit 7 rep-
resents sector F. Therefore, when we look at the first word at the bit
map (bytes 38, 39) the bits represent, fromlefttoright, sectors 7,6, 5, 4,
3,2,1,0,F,E,D,C,B, A, 9, 8,. Each following word takes the same for-
mat for its group of sectors.

Page 49

_— J“.

{?75 X

oL DIELL

g JirgLE 3

Ea ‘ - _ = .

ch directory entry has the foliowing format: Bytes 1C-1F First file segment entry. Since the sectors of a file may
Bytes 0-9 File Name occupy one or more separate areas on the diskette,
each group of contiguous sectorsis represented by

Bytes A,B Unknown - I hate Seen them in use
Byte C git t1:) - on = program file, off = data file the th;;ee b:ti ﬁllle segn'flent entry. Each file segment
it 1-on = internal format, off = display for entry has the following format: |
- Bit 2 - unused pray format First byte -Low order byte of sector number of first in the segment.
Bit 3 - on = write protected. off = . ‘ Second byte -High order nibble (bits 4-7) = low order nibble of
" Bit 4 - unused P ’ not write protected number of sectors (-1) in this segment added to this
Bit 5] . number of segments in all previous segments.
- unuse
_ | Low order nibble (bits 0-3) = high order portion (for
Bit 6 - unused sectors above X' FF') of sector number of first sector

in this segment.
records Third byte -High order nibble (bits 4-7) = high order nibble of
Byte D Number of records per sector. Used only for data files. number of sectors (-1) in this segment added to the
number of segments in all previous segments. This

For fixed length records it is the actual number of
complete records in each sector. For variable length nibble is used only if the number of sectors exceeds

Bit 7 - on = variable length records, off = fixed length

g

records it is always 1. X' FF'.
BytesE, F Number ofsectorsin the file. This word value is always Low order nibble (bits 0-3) = middle nibble of num-
one less than th_e: file size indicated by the Disk Manager ber of sectors (-1) in this segment added to the num-
bec:ause thehnrsk Manager includes the sector con- ber of segments in all previous segments. -
| taining the directory entry in the size.
Byte 10 Number of sectors used in the last sector of the file.
: This byte is present only for program files and data The _folluwing examples sh_ould make clear how this information |
files having variable length records. An end sentinel is applies to the directory entrigs. , , o eenend
foynd at the position in _the last sector pointed to by 1. 4155 544F 4C4f 4144 2020 0000 0100 0006 1700
:E'S;a:u?_-ll:ﬂ:tpro)g(;re:: files the end sentinel is X' AA”: 0000 0000 0000 0000 0000 4851 0000 - This ié‘a pro-
rgaia tiles it is X' FF'. _ 2L
Byte 11 Maximum number of bytes aliowed in a record. This is gram fite named AUTO-LOAD. /
used by all data files. It occupies 6 sectors, the end sentinel is X'17’ bytes into y
Byte 12 For variable data files - number of sectors used for the 4 he last sector and the file begins at sector 148.- ST
filte (low order byte, equal to byte F). 2. 2120 2020 2020 2020 2020 0000 OBOQ_QQQET gos0 _TP;?_% CLE N A
“wrop T o —— L L ls el LN T
For fixed data files - number of records in the file (low - o i 27 7. 0600 0000 000040000.2210_0000 - This is a write pro-
order byte). | , tected data file named A. It is organized as a display for-
Not used for program files mat file with fixed length records of 80 bytes. ltoccupies 2 - e
Byte13 Forvariable data fil ' sectors with 3 records per sector; there are a total of 6
file (high o fde?tzy': :Se- I;Uﬂbe; c:f sEector used for the records.in the file. The file starts at sector X'22". . ./ LCmrs
., Pyie equatio byte E.) : 3.,, .. _ 5649 5441°4D49 4E20 2020 0000 0202 0024 0080 /iwr v, .
Of;:f:gt:fta flles - number of records in the fite (high e . 4700 0000 0000 0000 00005030 0200-Thiisadata ;
. | | file named VITAMIN. Itis orga}ﬁized asaninternal format /
Not used for program files. . | file with fixed length records(of 128 bytes. l\t occupies 36 —
Page 50 | | Page 51 ST erind SR Lerran

